David Dahmen, Axel Hutt, Giacomo Indiveri, Ann Kennedy, Jeremie Lefebvre, Luca Mazzucato, Adilson E. Motter, Rishikesh Narayanan, Melika Payvand , Henrike Planert , Richard Gast
Much effort has been spent clustering neurons into transcriptomic or functional cell types and characterizing the differences between them. Beyond subdividing neurons into categories, we must recognize that no two neurons are identical and that graded physiological or transcriptomic properties exist within cells of a given type. This often overlooked “within-type” heterogeneity is a specific neuronal implementation of what statistical physics refers to as “disorder” and exhibits rich computational properties, the identification of which may shed crucial insights into theories of brain function. In this perspective article, we address this gap by highlighting theoretical frameworks for the study of neural tissue heterogeneity and discussing the benefits and implications of within-type heterogeneity for neural network dynamics, computation, and self-organization.
Read the full article at: inria.hal.science