Month: August 2020

Non-normality and non-monotonic dynamics in complex reaction networks

Zachary G. Nicolaou, Takashi Nishikawa, Schuyler B. Nicholson, Jason R. Green, Adilson E. Motter

 

Complex chemical reaction networks, which underlie many industrial and biological processes, often exhibit non-monotonic changes in chemical species concentrations, typically described using nonlinear models. Such non-monotonic dynamics are in principle possible even in linear models if the matrices defining the models are non-normal, as characterized by a necessarily non-orthogonal set of eigenvectors. However, the extent to which non-normality is responsible for non-monotonic behavior remains an open question. Here, using a master equation to model the reaction dynamics, we derive a general condition for observing non-monotonic dynamics of individual species, establishing that non-normality promotes non-monotonicity but is not a requirement for it. In contrast, we show that non-normality is a requirement for non-monotonic dynamics to be observed in the Rényi entropy. Using hydrogen combustion as an example application, we demonstrate that non-monotonic dynamics under experimental conditions are supported by a linear chain of connected components, in contrast with the dominance of a single giant component observed in typical random reaction networks. The exact linearity of the master equation enables development of rigorous theory and simulations for dynamical networks of unprecedented size (approaching 10^5 dynamical variables, even for a network of only 20 reactions and involving less than 100 atoms). Our conclusions are expected to hold for other combustion processes, and the general theory we develop is applicable to all chemical reaction networks, including biological ones.

Source: arxiv.org

Data Science and Cities: A Critical Approach

Fábio Duarte and Priyanka deSouza

 

Sensors increasingly permeate our lives and generate a plethora of data, which has transformed the way we live in cities. Planners have been using data-science to improve our understanding of urban issues. While other domains have highlighted concerns with big data collection, aggregation, and analytical methods to understand different phenomena, urban planning has an additional aspiration: not only to understand, but to transform society through planning. Thus, on top of critically approaching data collection and analytical methods, for the emergent field of urban science to become a distinctively unique body of knowledge, it must examine the ontological and epistemological boundaries of the big data paradigm and how it affects urban decision-making processes and their short- and long-term consequences in cities.

Source: hdsr.mitpress.mit.edu

Swarm Intelligence and Cyber-Physical Systems: Concepts, Challenges and Future Trends 

Melanie Schranz, Gianni A.Di Caro, Thomas Schmickl, Wilfried Elmenreich, Farshad Arvin, Ahmet Şekercioğlu, Micha Sende

Swarm and Evolutionary Computation

 

Swarm Intelligence (SI) is a popular multi-agent framework that has been originally inspired by swarm behaviors observed in natural systems, such as ant and bee colonies. In a system designed after swarm intelligence, each agent acts autonomously, reacts on dynamic inputs, and, implicitly or explicitly, works collaboratively with other swarm members without a central control. The system as a whole is expected to exhibit global patterns and behaviors. Although well-designed swarms can show advantages in adaptability, robustness, and scalability, it must be noted that SI system haven’t really found their way from lab demonstrations to real-world applications, so far. This is particularly true for embodied SI, where the agents are physical entities, such as in swarm robotics scenarios. In this paper, we start from these observations, outline different definitions and characterizations, and then discuss present challenges in the perspective of future use of swarm intelligence. These include application ideas, research topics, and new sources of inspiration from biology, physics, and human cognition. To motivate future applications of swarms, we make use of the notion of cyber-physical systems (CPS). CPSs are a way to encompass the large spectrum of technologies including robotics, internet of things (IoT), Systems on Chip (SoC), embedded systems, and so on. Thereby, we give concrete examples for visionary applications and their challenges representing the physical embodiment of swarm intelligence in autonomous driving and smart traffic, emergency response, environmental monitoring, electric energy grids, space missions, medical applications, and human networks. We do not aim to provide new solutions for the swarm intelligence or CPS community, but rather build a bridge between these two communities. This allows us to view the research problems of swarm intelligence from a broader perspective and motivate future research activities in modeling, design, validation/verification, and human-in-the-loop concepts.

Source: www.sciencedirect.com

An automated pipeline for the discovery of conspiracy and conspiracy theory narrative frameworks: Bridgegate, Pizzagate and storytelling on the web

Timothy R. Tangherlini, Shadi Shahsavari, Behnam Shahbazi, Ehsan Ebrahimzadeh, Vwani Roychowdhury

 

Although a great deal of attention has been paid to how conspiracy theories circulate on social media and their factual counterpart conspiracies, there has been little computational work done on describing their narrative structures. We present an automated pipeline for the discovery and description of the generative narrative frameworks of conspiracy theories on social media, and actual conspiracies reported in the news media. We base this work on two separate repositories of posts and news articles describing the well-known conspiracy theory Pizzagate from 2016, and the New Jersey conspiracy Bridgegate from 2013. We formulate a graphical generative machine learning model where nodes represent actors/actants, and multi-edges and self-loops among nodes capture context-specific relationships. Posts and news items are viewed as samples of subgraphs of the hidden narrative network. The problem of reconstructing the underlying structure is posed as a latent model estimation problem. We automatically extract and aggregate the actants and their relationships from the posts and articles. We capture context specific actants and interactant relationships by developing a system of supernodes and subnodes. We use these to construct a network, which constitutes the underlying narrative framework. We show how the Pizzagate framework relies on the conspiracy theorists’ interpretation of "hidden knowledge" to link otherwise unlinked domains of human interaction, and hypothesize that this multi-domain focus is an important feature of conspiracy theories. While Pizzagate relies on the alignment of multiple domains, Bridgegate remains firmly rooted in the single domain of New Jersey politics. We hypothesize that the narrative framework of a conspiracy theory might stabilize quickly in contrast to the narrative framework of an actual one, which may develop more slowly as revelations come to light.

Source: arxiv.org

Socio-economic, built environment, and mobility conditions associated with crime: a study of multiple cities

Marco De Nadai, Yanyan Xu, Emmanuel Letouzé, Marta C. González & Bruno Lepri 
Scientific Reports volume 10, Article number: 13871 (2020)

 

Nowadays, 23% of the world population lives in multi-million cities. In these metropolises, criminal activity is much higher and violent than in either small cities or rural areas. Thus, understanding what factors influence urban crime in big cities is a pressing need. Seminal studies analyse crime records through historical panel data or analysis of historical patterns combined with ecological factor and exploratory mapping. More recently, machine learning methods have provided informed crime prediction over time. However, previous studies have focused on a single city at a time, considering only a limited number of factors (such as socio-economical characteristics) and often at large in a single city. Hence, our understanding of the factors influencing crime across cultures and cities is very limited. Here we propose a Bayesian model to explore how violent and property crimes are related not only to socio-economic factors but also to the built environmental (e.g. land use) and mobility characteristics of neighbourhoods. To that end, we analyse crime at small areas and integrate multiple open data sources with mobile phone traces to compare how the different factors correlate with crime in diverse cities, namely Boston, Bogotá, Los Angeles and Chicago. We find that the combined use of socio-economic conditions, mobility information and physical characteristics of the neighbourhood effectively explain the emergence of crime, and improve the performance of the traditional approaches. However, we show that the socio-ecological factors of neighbourhoods relate to crime very differently from one city to another. Thus there is clearly no “one fits all” model.

Source: www.nature.com