World set to reach 8 billion people by 15 November 2022

The global population is projected to reach 8 billion on 15 November 2022, and India is projected to surpass China as the world’s most populous country in 2023, according to World Population Prospects 2022, released today on World Population Day.


“This year’s World Population Day falls during a milestone year, when we anticipate the birth of the Earth’s eight billionth inhabitant. This is an occasion to celebrate our diversity, recognize our common humanity, and marvel at advancements in health that have extended lifespans and dramatically reduced maternal and child mortality rates,” said UN Secretary-General António Guterres. “At the same time, it is a reminder of our shared responsibility to care for our planet and a moment to reflect on where we still fall short of our commitments to one another,” he added.


The global population is growing at its slowest rate since 1950, having fallen under 1 per cent in 2020. The latest projections by the United Nations suggest that the world’s population could grow to around 8.5 billion in 2030 and 9.7 billion in 2050. It is projected to reach a peak of around 10.4 billion people during the 2080s and to remain at that level until 2100.

Read the full article at:

A causal test of the strength of weak ties

15 Sep 2022
Vol 377, Issue 6612
pp. 1304-1310

The authors analyzed data from multiple large-scale randomized experiments on LinkedIn’s People You May Know algorithm, which recommends new connections to LinkedIn members, to test the extent to which weak ties increased job mobility in the world’s largest professional social network. The experiments randomly varied the prevalence of weak ties in the networks of over 20 million people over a 5-year period, during which 2 billion new ties and 600,000 new jobs were created. The results provided experimental causal evidence supporting the strength of weak ties and suggested three revisions to the theory. First, the strength of weak ties was nonlinear. Statistical analysis found an inverted U-shaped relationship between tie strength and job transmission such that weaker ties increased job transmission but only to a point, after which there were diminishing marginal returns to tie weakness. Second, weak ties measured by interaction intensity and the number of mutual connections displayed varying effects. Moderately weak ties (measured by mutual connections) and the weakest ties (measured by interaction intensity) created the most job mobility. Third, the strength of weak ties varied by industry. Whereas weak ties increased job mobility in more digital industries, strong ties increased job mobility in less digital industries.

Read the full article at:

Multidimensional Economic Complexity: How the Geography of Trade, Technology, and Research Explain Inclusive Green Growth

Viktor Stojkoski, Philipp Koch, César A. Hidalgo
To achieve inclusive green growth, countries need to consider a multiplicity of economic, social, and environmental factors. These are often captured by metrics of economic complexity derived from the geography of trade, thus missing key information on innovative activities. To bridge this gap, we combine trade data with data on patent applications and research publications to build models that significantly and robustly improve the ability of economic complexity metrics to explain international variations in inclusive green growth. We show that measures of complexity built on trade and patent data combine to explain future economic growth and income inequality and that countries that score high in all three metrics tend to exhibit lower emission intensities. These findings illustrate how the geography of trade, technology, and research combine to explain inclusive green growth.

Read the full article at: