Quantifying emergent complexity

Erik Hoel

Patterns, Volume 7, Issue 1101472January 09, 2026

Complex systems can be described at myriad different scales, and their causal workings often have a multiscale structure (e.g., a computer can be described at the microscale of its hardware circuitry, the mesoscale of its machine code, and the macroscale of its operating system). While scientists study and model systems across the full hierarchy of their scales, from microphysics to macroeconomics, there is debate about what the macroscales of systems can possibly add beyond mere compression. To resolve this long-standing issue, here, a new theory of emergence is introduced that can distinguish which scales irreducibly contribute to a system’s causal workings. The theory’s application is demonstrated in coarse grains of Markov chains, revealing a novel measure of emergent complexity: how widely distributed a system’s causal contributions are across its hierarchy of scales.

Read the full article at: www.cell.com