Self-Replicating Hierarchical Structures Emerge in a Binary Cellular Automaton

Bo Yang

We have discovered a novel transition rule for binary cellular automata (CA) that yields self-replicating structures across two spatial and temporal scales from sparsely populated random initial conditions. Lower-level, shapeshifting clusters frequently follow a transient attractor trajectory, generating new clusters, some of which periodically self-duplicate. When the initial distribution of live cells is sufficiently sparse, these clusters coalesce into larger formations that also self-replicate. These formations may further form the boundaries of an expanding complex on an even larger scale. This rule, dubbed “Outlier,” is rotationally symmetric and applies to 2D Moore neighborhoods. It was evolved through Genetic Programming during an extensive automated search for rules that foster open-ended evolution in CA. While self-replicating structures, both crafted and emergent, hav

Read the full article at: arxiv.org