Tag: misinformation

Fact-checking information from large language models can decrease headline discernment

Matthew R. DeVerna, Harry Yaojun Yan, Kai-Cheng Yang, and Filippo Menczer
PNAS 121 (50) e2322823121

This study explores how large language models (LLMs) used for fact-checking affect the perception and dissemination of political news headlines. Despite the growing adoption of AI and tests of its ability to counter online misinformation, little is known about how people respond to LLM-driven fact-checking. This experiment reveals that even LLMs that accurately identify false headlines do not necessarily enhance users’ abilities to discern headline accuracy or promote accurate news sharing. LLM fact checks can actually reduce belief in true news wrongly labeled as false and increase belief in dubious headlines when the AI is unsure about an article’s veracity. These findings underscore the need for research on AI fact-checking’s unintended consequences, informing policies to enhance information integrity in the digital age.

Read the full article in PNAS: doi:10.1073/pnas.2322823121

Account credibility inference based on news-sharing networks

Bao Tran Truong, Oliver Melbourne Allen & Filippo Menczer
EPJ Data Science volume 13, Article number: 10 (2024)

The spread of misinformation poses a threat to the social media ecosystem. Effective countermeasures to mitigate this threat require that social media platforms be able to accurately detect low-credibility accounts even before the content they share can be classified as misinformation. Here we present methods to infer account credibility from information diffusion patterns, in particular leveraging two networks: the reshare network, capturing an account’s trust in other accounts, and the bipartite account-source network, capturing an account’s trust in media sources. We extend network centrality measures and graph embedding techniques, systematically comparing these algorithms on data from diverse contexts and social media platforms. We demonstrate that both kinds of trust networks provide useful signals for estimating account credibility. Some of the proposed methods yield high accuracy, providing promising solutions to promote the dissemination of reliable information in online communities. Two kinds of homophily emerge from our results: accounts tend to have similar credibility if they reshare each other’s content or share content from similar sources. Our methodology invites further investigation into the relationship between accounts and news sources to better characterize misinformation spreaders.

Read the full article at: epjdatascience.springeropen.com

Online misinformation is linked to early COVID-19 vaccination hesitancy and refusal

Francesco Pierri, Brea L. Perry, Matthew R. DeVerna, Kai-Cheng Yang, Alessandro Flammini, Filippo Menczer & John Bryden
Scientific Reports volume 12, Article number: 5966 (2022)

Widespread uptake of vaccines is necessary to achieve herd immunity. However, uptake rates have varied across U.S. states during the first six months of the COVID-19 vaccination program. Misbeliefs may play an important role in vaccine hesitancy, and there is a need to understand relationships between misinformation, beliefs, behaviors, and health outcomes. Here we investigate the extent to which COVID-19 vaccination rates and vaccine hesitancy are associated with levels of online misinformation about vaccines. We also look for evidence of directionality from online misinformation to vaccine hesitancy. We find a negative relationship between misinformation and vaccination uptake rates. Online misinformation is also correlated with vaccine hesitancy rates taken from survey data. Associations between vaccine outcomes and misinformation remain significant when accounting for political as well as demographic and socioeconomic factors. While vaccine hesitancy is strongly associated with Republican vote share, we observe that the effect of online misinformation on hesitancy is strongest across Democratic rather than Republican counties. Granger causality analysis shows evidence for a directional relationship from online misinformation to vaccine hesitancy. Our results support a need for interventions that address misbeliefs, allowing individuals to make better-informed health decisions.

Read the full article at: www.nature.com

Right and left, partisanship predicts (asymmetric) vulnerability to misinformation

We analyze the relationship between partisanship, echo chambers, and vulnerability to online misinformation by studying news sharing behavior on Twitter. While our results confirm prior findings that online misinformation sharing is strongly correlated with right-leaning partisanship, we also uncover a similar, though weaker, trend among left-leaning users. Because of the correlation between a user’s partisanship and their position within a partisan echo chamber, these types of influence are confounded. To disentangle their effects, we performed a regression analysis and found that vulnerability to misinformation is most strongly influenced by partisanship for both left- and right-leaning users.

Read the full article at: misinforeview.hks.harvard.edu

The Manufacture of Political Echo Chambers by Follow Train Abuse on Twitter

Christopher Torres-Lugo, Kai-Cheng Yang, Filippo Menczer

A growing body of evidence points to critical vulnerabilities of social media, such as the emergence of partisan echo chambers and the viral spread of misinformation. We show that these vulnerabilities are amplified by abusive behaviors associated with so-called ”follow trains” on Twitter, in which long lists of like-minded accounts are mentioned for others to follow. This leads to the formation of highly dense and hierarchical echo chambers. We present the first systematic analysis of U.S. political train networks, which involve many thousands of hyper-partisan accounts. These accounts engage in various suspicious behaviors, including some that violate platform policies: we find evidence of inauthentic automated accounts, artificial inflation of friends and followers, and abnormal content deletion. The networks are also responsible for amplifying toxic content from low-credibility and conspiratorial sources. Platforms may be reluctant to curb this kind of abuse for fear of being accused of political bias. As a result, the political echo chambers manufactured by follow trains grow denser and train accounts accumulate influence; even political leaders occasionally engage with them.