Tag: language

Gabriele Scheler: From Verbal Thought to Neuron Computation | Brain Inspired

Gabriele Scheler co-founded the Carl Correns Foundation for Mathematical Biology. Carl Correns was her great grandfather, one of the early pioneers in genetics. Gabriele is a computational neuroscientist, whose goal is to build models of cellular computation, and much of her focus is on neurons.
We discuss her theoretical work building a new kind of single neuron model. She, like Dmitri Chklovskii a few episodes ago, believes we’ve been stuck with essentially the same family of models for a neuron for a long time, despite minor variations on those models. The model Gabriele is working on, for example, respects the computations going on not only externally, via spiking, which has been the only game in town forever, but also the computations going on within the cell itself. Gabriele is in line with previous guests like Randy Gallistel, David Glanzman, and Hessam Akhlaghpour, who argue that we need to pay attention to how neurons are computing various things internally and how that affects our cognition. Gabriele also believes the new neuron model she’s developing will improve AI, drastically simplifying the models by providing them with smarter neurons, essentially.
We also discuss the importance of neuromodulation, her interest in wanting to understand how we think via our internal verbal monologue, her lifelong interest in language in general, what she thinks about LLMs, why she decided to start her own foundation to fund her science, what that experience has been like so far. Gabriele has been working on these topics for many years, and as you’ll hear in a moment, she was there when computational neuroscience was just starting to pop up in a few places, when it was a nascent field, unlike its current ubiquity in neuroscience.
Listen at: braininspired.co

How Output Outweighs Input and Interlocutors Matter for Study-Abroad SLA: Computational Social Network Analysis of Learner Interactions (winner, Best of MLJ for 2022 paper award)

MICHAŁ B. PARADOWSKI, AGNIESZKA CIERPICH–KOZIEŁ, CHIH–CHUN CHEN, JEREMI K. OCHAB

MLJ Volume106, Issue4 Winter 2022 Pages 694-725

This data-driven study framed in the interactionist approach investigates the influence of social graph topology and peer interaction dynamics among foreign exchange students enrolled in an intensive German language course on second language acquisition (SLA) outcomes. Applying the algorithms and metrics of computational social network analysis (SNA), we find that (a) the best predictor of target language (TL) performance is reciprocal interactions in the language being acquired, (b) the proportion of output in the TL is a stronger predictor than input (Principle of Proportional Output), (c) there is a negative relationship between performance and interactions with same-first-language speakers, (d) a significantly underperforming English native-speaker dominated cluster is present, and (e) there are more intense interactions taking place between students of different proficiency levels. Unlike previous study abroad social network research concentrating on the microlevel of individual learners’ egocentric networks and presenting an emic view only, this study constitutes the first application of computational SNA to a complete learner network (sociogram). It provides new insights into the link between social relations and SLA with an etic perspective, showing how social network configuration and peer learner interaction are stronger predictors of TL performance than individual factors such as attitude or motivation, and offering a rigorous methodology for investigating the phenomenon.

Read the full article at: onlinelibrary.wiley.com