
Read the full article at: www.pnas.org
Networking the complexity community since 1999
Tag: ecological data

Read the full article at: www.pnas.org
The tropics contain the overwhelming majority of Earth’s biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity.
The future of hyperdiverse tropical ecosystems
Jos Barlow, et al.
Nature volume 559, pages 517–526 (2018)
Source: www.nature.com
The networks that form natural, social, and technological systems are vulnerable to the spreading impacts of perturbations. Theory predicts that networks with a clustered or modular structure—where nodes within a module interact more frequently than they do with nodes in other modules—might contain a perturbation, preventing it from spreading to the entire network. Gilarranz et al. conducted experiments with networked populations of springtail ( Folsomia candida ) microarthropods to show that modularity limits the impact of a local extinction on neighboring nodes (see the Perspective by Sales-Pardo). In networks with high modularity, the perturbation was contained within the targeted module, and its impact did not spread to nodes beyond it. However, simulations revealed that modularity is beneficial to the network only when perturbations are present; otherwise, it hinders population growth.
Science , this issue p. [199][1]; see also p. [128][2]
[1]: /lookup/doi/10.1126/science.aal4122
[2]: /lookup/doi/10.1126/science.aan8075
Source: science.sciencemag.org
Fishing marine ecosystems indiscriminately and intensely can have negative impacts on biodiversity, but it may increase the biomass of fish available for capture in the system. We explore the possibility that China’s high fishery catches are a result of predator removal using an ecosystem model of the East China Sea (ECS). We show that China’s high fishery catches can be explained by the removal of larger predatory fish and consequent increases in the production of smaller fish. We project that single-species management would decrease catches in the ECS by reversing these ecosystem effects. Fisheries similar to those in China produce a large fraction of global catch; management reform in these areas must consider the entire ecosystem, rather than individual species.
Source: www.pnas.org
Kelp forests support diverse and productive ecological communities throughout temperate and arctic regions worldwide, providing numerous ecosystem services to humans. Literature suggests that kelp forests are increasingly threatened by a variety of human impacts, including climate change, overfishing, and direct harvest. We provide the first globally comprehensive analysis of kelp forest change over the past 50 y, identifying a high degree of variation in the magnitude and direction of change across the geographic range of kelps. These results suggest region-specific responses to global change, with local drivers playing an important role in driving patterns of kelp abundance. Increased monitoring aimed at understanding regional kelp forest dynamics is likely to prove most effective for the adaptive management of these important ecosystems.
Source: www.pnas.org