Tag: complex systems

Quantifying Human-AI Synergy

Christoph Riedl, Ben Weidmann

We introduce a novel Bayesian Item Response Theory framework to quantify human–AI synergy, separating individual and collaborative ability while controlling for task difficulty in interactive settings. Unlike standard static benchmarks, our approach models human–AI performance as a joint process, capturing both user-specific factors and moment-to-moment fluctuations. We validate the framework by applying it to human–AI benchmark data (n=667) and find significant synergy. We demonstrate that collaboration ability is distinct from individual problem-solving ability. Users better able to infer and adapt to others’ perspectives achieve superior collaborative performance with AI–but not when working alone. Moreover, moment-to-moment fluctuations in perspective taking influence AI response quality, highlighting the role of dynamic user factors in collaboration. By introducing a principled framework to analyze data from human-AI collaboration, interactive benchmarks can better complement current single-task benchmarks and crowd-assessment methods. This work informs the design and training of language models that transcend static prompt benchmarks to achieve adaptive, socially aware collaboration with diverse and dynamic human partners.

https://osf.io/preprints/psyarxiv/vbkmt_v1 

Modelling the emergence of open-ended technological evolution

James Winters, Mathieu Charbonneau
Humans stand alone in terms of their potential to collectively and cumulatively improve technologies in an open-ended manner. This open-endedness provides societies with the ability to continually expand their resources and to increase their capacity to store, transmit and process information at a collective-level. Here, we propose that the production of resources arises from the interaction between technological systems (a society’s repertoire of interdependent skills, techniques and artifacts) and search spaces (the aggregate collection of needs, problems and goals within a society). Starting from this premise we develop a macro-level model wherein both technological systems and search spaces are subject to cultural evolutionary dynamics. By manipulating the extent to which these dynamics are characterised by stochastic or selection-like processes, we demonstrate that open-ended growth is extremely rare, historically contingent and only possible when technological systems and search spaces co-evolve. Here, stochastic factors must be strong enough to continually perturb the dynamics into a far-from-equilibrium state, whereas selection-like factors help maintain effectiveness and ensure the sustained production of resources. Only when this co-evolutionary dynamic maintains effective technological systems, supports the ongoing expansion of the search space and leads to an increased provision of resources do we observe open-ended technological evolution.

Read the full article at: arxiv.org

How Output Outweighs Input and Interlocutors Matter for Study-Abroad SLA: Computational Social Network Analysis of Learner Interactions (winner, Best of MLJ for 2022 paper award)

MICHAŁ B. PARADOWSKI, AGNIESZKA CIERPICH–KOZIEŁ, CHIH–CHUN CHEN, JEREMI K. OCHAB

MLJ Volume106, Issue4 Winter 2022 Pages 694-725

This data-driven study framed in the interactionist approach investigates the influence of social graph topology and peer interaction dynamics among foreign exchange students enrolled in an intensive German language course on second language acquisition (SLA) outcomes. Applying the algorithms and metrics of computational social network analysis (SNA), we find that (a) the best predictor of target language (TL) performance is reciprocal interactions in the language being acquired, (b) the proportion of output in the TL is a stronger predictor than input (Principle of Proportional Output), (c) there is a negative relationship between performance and interactions with same-first-language speakers, (d) a significantly underperforming English native-speaker dominated cluster is present, and (e) there are more intense interactions taking place between students of different proficiency levels. Unlike previous study abroad social network research concentrating on the microlevel of individual learners’ egocentric networks and presenting an emic view only, this study constitutes the first application of computational SNA to a complete learner network (sociogram). It provides new insights into the link between social relations and SLA with an etic perspective, showing how social network configuration and peer learner interaction are stronger predictors of TL performance than individual factors such as attitude or motivation, and offering a rigorous methodology for investigating the phenomenon.

Read the full article at: onlinelibrary.wiley.com

Elements and Relations: Aspects of a Scientific Metaphysics

This textbook is built around the central proposition that systems theory is an attempt to construct an “exact and scientific metaphysics” (an ESM).

Read the full article at: link.springer.com

Conference on Complex Systems 2022: Call for Satellite Proposals

19-20/10/2022, Palma de Mallorca, Spain.
Deadline for submission: April 10th, 2022 (strict deadline). 

The call for satellites at the Conference on Complex Systems 2022 (CCS 2022) is officially open. Following the successful tradition of previous editions, CCS 2022 will host satellite events within the main conference.
A satellite session is a full-day or half-day meeting with a focus on a specific topic of complex systems and its applications. Each satellite is organized and managed by its own committee, although the coffee-breaks and lunch will be offered by the CCS organization. The satellite organizers are responsible for reviewing proposed papers and working with their presenters.

More info on satellite events and submission can be found at: