Month: June 2024

Fundamental Constraints to the Logic of Living Systems

Solé, R.; Kempes, C. P.; Corominas-Murtra, B.; De Domenico, M.; Kolchinsky, A.; Lachmann, M.; Libby, E.; Saavedra, S.; Smith, E.; Wolpert, D.

Preprints 2024, 2024060891

It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve. Are these limitations relevant in shaping the fabric of the possible? Here, we argue that fundamental constraints are associated with the logic of living matter. We illustrate this idea by considering the thermodynamic properties of living systems, the linear nature of molecular information, the cellular nature of the building blocks of life, multicellularity and development, the threshold nature of computations in cognitive systems, and the discrete nature of the architecture of ecosystems. In all these examples, we present available evidence and suggest potential avenues towards a well-defined theoretical formulation.

Read the full article at: www.preprints.org

Experimental Measurement of Assembly Indices are Required to Determine The Threshold for Life

Sara I. Walker, Cole Mathis, Stuart Marshall, Leroy Cronin

Assembly Theory (AT) was developed to help distinguish living from non-living systems. The theory is simple as it posits that the amount of selection or Assembly is a function of the number of complex objects where their complexity can be objectively determined using assembly indices. The assembly index of a given object relates to the number of recursive joining operations required to build that object and can be not only rigorously defined mathematically but can be experimentally measured. In pervious work we outlined the theoretical basis, but also extensive experimental measurements that demonstrated the predictive power of AT. These measurements showed that is a threshold in assembly indices for organic molecules whereby abiotic chemical systems could not randomly produce molecules with an assembly index greater or equal than 15. In a recent paper by Hazen et al [1] the authors not only confused the concept of AT with the algorithms used to calculate assembly indices, but also attempted to falsify AT by calculating theoretical assembly indices for objects made from inorganic building blocks. A fundamental misunderstanding made by the authors is that the threshold is a requirement of the theory, rather than experimental observation. This means that exploration of inorganic assembly indices similarly requires an experimental observation, correlated with the theoretical calculations. Then and only then can the exploration of complex inorganic molecules be done using AT and the threshold for living systems, as expressed with such building blocks, be determined. Since Hazen et al.[1] present no experimental measurements of assembly theory, their analysis is not falsifiable.

Read the full article at: arxiv.org

Higher-order correlations reveal complex memory in temporal hypergraphs

Luca Gallo, Lucas Lacasa, Vito Latora & Federico Battiston 
Nature Communications volume 15, Article number: 4754 (2024)

Many real-world complex systems are characterized by interactions in groups that change in time. Current temporal network approaches, however, are unable to describe group dynamics, as they are based on pairwise interactions only. Here, we use time-varying hypergraphs to describe such systems, and we introduce a framework based on higher-order correlations to characterize their temporal organization. The analysis of human interaction data reveals the existence of coherent and interdependent mesoscopic structures, thus capturing aggregation, fragmentation and nucleation processes in social systems. We introduce a model of temporal hypergraphs with non-Markovian group interactions, which reveals complex memory as a fundamental mechanism underlying the emerging pattern in the data.

Read the full article at: www.nature.com

Measuring Complexity using Information

Klaus Jaffe

Measuring complexity in multidimensional systems with high degrees of freedom and a variety of types of information, remains an important challenge. Complexity of a system is related to the number and variety of components, the number and type of interactions among them, the degree of redundancy, and the degrees of freedom of the system. Examples show that different disciplines of science converge in complexity measures for low and high dimensional problems. For low dimensional systems, such as coded strings of symbols (text, computer code, DNA, RNA, proteins, music), Shannon’s Information Entropy (expected amount of information in an event drawn from a given distribution) and Kolmogorov‘s Algorithmic Complexity (the length of the shortest algorithm that produces the object as output), are used for quantitative measurements of complexity. For systems with more dimensions (ecosystems, brains, social groupings), network science provides better tools for that purpose. For complex highly multidimensional systems, none of the former methods are useful. Useful Information Φ, as proposed by Infodynamics, can be related to complexity. It can be quantified by measuring the thermodynamic Free Energy F and/or useful Work it produces. Complexity measured as Total Information I, can then be defined as the information of the system, that includes Φ, useless information or Noise N, and Redundant Information R. Measuring one or more of these variables allows quantifying and classifying complexity.

Read the full article at: www.qeios.com