Month: April 2024

A Dynamical Systems View of Psychiatric Disorders—Theory: A Review

Marten Scheffer, Claudi L. Bockting, Denny Borsboom, et al.

JAMA Psychiatry

Importance Psychiatric disorders may come and go with symptoms changing over a lifetime. This suggests the need for a paradigm shift in diagnosis and treatment. Here we present a fresh look inspired by dynamical systems theory. This theory is used widely to explain tipping points, cycles, and chaos in complex systems ranging from the climate to ecosystems.

Observations In the dynamical systems view, we propose the healthy state has a basin of attraction representing its resilience, while disorders are alternative attractors in which the system can become trapped. Rather than an immutable trait, resilience in this approach is a dynamical property. Recent work has demonstrated the universality of generic dynamical indicators of resilience that are now employed globally to monitor the risks of collapse of complex systems, such as tropical rainforests and tipping elements of the climate system. Other dynamical systems tools are used in ecology and climate science to infer causality from time series. Moreover, experiences in ecological restoration confirm the theoretical prediction that under some conditions, short interventions may invoke long-term success when they flip the system into an alternative basin of attraction. All this implies practical applications for psychiatry, as are discussed in part 2 of this article.

Conclusions and Relevance Work in the field of dynamical systems points to novel ways of inferring causality and quantifying resilience from time series. Those approaches have now been tried and tested in a range of complex systems. The same tools may help monitoring and managing resilience of the healthy state as well as psychiatric disorders.

Read the full article at: jamanetwork.com

See Also: A Dynamical Systems View of Psychiatric Disorders—Practical Implications: A Review

The Third Story of the Universe: an evolutionary worldview for the noosphere

Francis Heylighen, Shima Beigi, Clement Vidal

This report is a first survey of a new, evolutionary narrative, called the Third Story, intended to replace and complement the earlier religious (First) and mechanistic (Second) worldviews. We first argue that the confusions created by a world that is ever more volatile, uncertain, complex and ambiguous (VUCA) have eroded people’s sense of coherence, that is, the degree to which they experience the world as comprehensible, manageable and meaningful. The First Story provides meaning and values, but its descriptions no longer provide an accurate understanding of how the universe functions. The Second Story, which sees the universe as a clockwork mechanism governed by the laws of nature, provides more accurate predictions that allow us to build powerful technologies. However, it does not provide meaning or values. The Third Story sees the universe as self-organizing towards increasing complexity and consciousness, subsequently producing matter, life, mind and society. It understands the fundamental mechanism of evolution as mutual adaptation or “fit” between interacting systems, thus generating synergetic wholes that in turn interact, so as integrate into even more complex wholes. Its implicit value is the search for fitness and synergy, thus inviting individuals to work towards a further integration of the noosphere, i.e. the planetary superorganism formed by humanity, its technological extensions, and the ecosystem.

Read the full article at: researchportal.vub.be

Emergence of fractal geometries in the evolution of a metabolic enzyme

Franziska L. Sendker, Yat Kei Lo, Thomas Heimerl, Stefan Bohn, Louise J. Persson, Christopher-Nils Mais, Wiktoria Sadowska, Nicole Paczia, Eva Nußbaum, María del Carmen Sánchez Olmos, Karl Forchhammer, Daniel Schindler, Tobias J. Erb, Justin L. P. Benesch, Erik G. Marklund, Gert Bange, Jan M. Schuller & Georg K. A. Hochberg 
Nature (2024)

Fractals are patterns that are self-similar across multiple length-scales. Macroscopic fractals are common in nature; however, so far, molecular assembly into fractals is restricted to synthetic systems. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.

Read the full article at: www.nature.com

Misinformation and harmful language are interconnected, rather than distinct, challenges

Mohsen Mosleh, Rocky Cole, David G Rand Author Notes
PNAS Nexus, Volume 3, Issue 3, March 2024, pgae111,

There is considerable concern about users posting misinformation and harmful language on social media. Substantial—yet largely distinct—bodies of research have studied these two kinds of problematic content. Here, we shed light on both research streams by examining the relationship between the sharing of misinformation and the use of harmful language. We do so by creating and analyzing a dataset of 8,687,758 posts from N = 6,832 Twitter (now called X) users, and a dataset of N = 14,617 true and false headlines from professional fact-checking websites. Our analyses reveal substantial positive associations between misinformation and harmful language. On average, Twitter posts containing links to lower-quality news outlets also contain more harmful language (β = 0.10); and false headlines contain more harmful language than true headlines (β = 0.19). Additionally, Twitter users who share links to lower-quality news sources also use more harmful language—even in non-news posts that are unrelated to (mis)information (β = 0.13). These consistent findings across different datasets and levels of analysis suggest that misinformation and harmful language are related in important ways, rather than being distinct phenomena. At the same, however, the strength of associations is not sufficiently high to make the presence of harmful language a useful diagnostic for information quality: most low-quality information does not contain harmful language, and a considerable fraction of high-quality information does contain harmful language. Overall, our results underscore important opportunities to integrate these largely disconnected strands of research and understand their psychological connections.

Read the full article at: academic.oup.com

Dynamical stability and chaos in artificial neural network trajectories along training

Kaloyan Danovski, Miguel C. Soriano, Lucas Lacasa
The process of training an artificial neural network involves iteratively adapting its parameters so as to minimize the error of the network’s prediction, when confronted with a learning task. This iterative change can be naturally interpreted as a trajectory in network space — a time series of networks — and thus the training algorithm (e.g. gradient descent optimization of a suitable loss function) can be interpreted as a dynamical system in graph space. In order to illustrate this interpretation, here we study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network, and its evolution through learning a simple classification task. We systematically consider different ranges of the learning rate and explore both the dynamical and orbital stability of the resulting network trajectories, finding hints of regular and chaotic behavior depending on the learning rate regime. Our findings are put in contrast to common wisdom on convergence properties of neural networks and dynamical systems theory. This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning

Read the full article at: arxiv.org