Month: April 2024

Stress Sharing as Cognitive Glue for Collective Intelligences: a computational model of stress as a coordinator for morphogenesis

Lakshwin Shreesha and Michael Levin

Individual cells have numerous competencies in physiological and metabolic spaces. However, multicellular collectives can reliably navigate anatomical morphospace towards much larger, reliable endpoints. Understanding the robustness and control properties of this process is critical for evolutionary developmental biology, bioengineering, and regenerative medicine. One mechanism that has been proposed for enabling individual cells to coordinate toward specific morphological outcomes is the sharing of stress (where stress is a physiological parameter that reflects the current amount of error in the context of a homeostatic loop). Here, we construct and analyze a multiscale agent-based model of morphogenesis in which we quantitatively examine the impact of stress sharing on the ability to reach target morphology. We found that stress sharing improves the morphogenetic efficiency of multicellular collectives; populations with stress sharing reached anatomical targets faster. Moreover, stress sharing influenced the future fate of distant cells in the multi-cellular collective, enhancing cells’ movement and their radius of influence, consistent with the hypothesis that stress sharing works to increase cohesiveness of collectives. During development, anatomical goal states could not be inferred from observation of stress states, revealing the limitations of knowledge of goals by an extern observer outside the system itself. Taken together, our analyses support an important role for stress sharing in natural and engineered systems that seek robust large-scale behaviors to emerge from the activity of their competent components.

Read the full article at: osf.io

Explosive Cooperation in Social Dilemmas on Higher-Order Networks

Andrea Civilini, Onkar Sadekar, Federico Battiston, Jesús Gómez-Gardeñes, and Vito Latora

Phys. Rev. Lett. 132, 167401

Understanding how cooperative behaviors can emerge from competitive interactions is an open problem in biology and social sciences. While interactions are usually modeled as pairwise networks, the units of many real-world systems can also interact in groups of three or more. Here, we introduce a general framework to extend pairwise games to higher-order networks. By studying social dilemmas on hypergraphs with a tunable structure, we find an explosive transition to cooperation triggered by a critical number of higher-order games. The associated bistable regime implies that an initial critical mass of cooperators is also required for the emergence of prosocial behavior. Our results show that higher-order interactions provide a novel explanation for the survival of cooperation.

Read the full article at: link.aps.org

Collective behavior from surprise minimization

Conor Heins, Beren Millidge, Lancelot Da Costa,  Richard P. Mann,  Karl J. Friston, Iain D. Couzin

PNAS

We introduce a model of collective behavior, proposing that individual members within a group, such as a school of fish or a flock of birds, act to minimize surprise. This active inference approach naturally generates well-known collective phenomena such as cohesion and directed movement without explicit behavioral rules. Our model reveals intricate relationships between individual beliefs and group properties, demonstrating that beliefs about uncertainty can shape collective decision-making accuracy. As agents update their generative model in real time, groups become more sensitive to external perturbations and more robust in encoding information. Our work provides fresh insights into understanding collective dynamics and could inspire strategies in the study of animal behavior, swarm robotics, and distributed systems.

Read the full article at: www.pnas.org

Biocomputation: Moving Beyond Turing with Living Cellular Computers

Ángel Goñi-Moreno

Communications of the ACM

Leveraging the synergies between theoretical CS and synthetic biology to create powerful cellular computers and move beyond Turing computation.

Read the full article at: cacm.acm.org

CSS Scientific Awards, deadline approaching

The Complex Systems Society announces the ninth edition of the CSS Scientific Awards. 

The Emerging Researcher Award recognizes promising researchers in Complex Systems within 3 years of the PhD defense.

The Junior Scientific Award is aimed at recognizing excellent scientific record of young researchers within 10 years of the PhD defense.

The Senior Scientific Award will recognize outstanding contributions of Complex Systems scholars at whatever stage of their careers.

Deadline: April 30th, 2024.

More at: cssociety.org