Month: November 2022

A machine learning model to identify corruption in México’s public procurement contracts

Andrés Aldana, Andrea Falcón-Cortés, Hernán Larralde

The costs and impacts of government corruption range from impairing a country’s economic growth to affecting its citizens’ well-being and safety. Public contracting between government dependencies and private sector instances, referred to as public procurement, is a fertile land of opportunity for corrupt practices, generating substantial monetary losses worldwide. Thus, identifying and deterring corrupt activities between the government and the private sector is paramount. However, due to several factors, corruption in public procurement is challenging to identify and track, leading to corrupt practices going unnoticed. This paper proposes a machine learning model based on an ensemble of random forest classifiers, which we call hyper-forest, to identify and predict corrupt contracts in México’s public procurement data. This method’s results correctly detect most of the corrupt and non-corrupt contracts evaluated in the dataset. Furthermore, we found that the most critical predictors considered in the model are those related to the relationship between buyers and suppliers rather than those related to features of individual contracts. Also, the method proposed here is general enough to be trained with data from other countries. Overall, our work presents a tool that can help in the decision-making process to identify, predict and analyze corruption in public procurement contracts.

Read the full article at: arxiv.org

A multinational Delphi consensus to end the COVID-19 public health threat

Jeffrey V. Lazarus, et al.

Nature (2022)

Despite notable scientific and medical advances, broader political, socioeconomic and behavioural factors continue to undercut the response to the COVID-19 pandemic1,2. Here we convened, as part of this Delphi study, a diverse, multidisciplinary panel of 386 academic, health, non-governmental organization, government and other experts in COVID-19 response from 112 countries and territories to recommend specific actions to end this persistent global threat to public health. The panel developed a set of 41 consensus statements and 57 recommendations to governments, health systems, industry and other key stakeholders across six domains: communication; health systems; vaccination; prevention; treatment and care; and inequities. In the wake of nearly three years of fragmented global and national responses, it is instructive to note that three of the highest-ranked recommendations call for the adoption of whole-of-society and whole-of-government approaches1, while maintaining proven prevention measures using a vaccines-plus approach2 that employs a range of public health and financial support measures to complement vaccination. Other recommendations with at least 99% combined agreement advise governments and other stakeholders to improve communication, rebuild public trust and engage communities3 in the management of pandemic responses. The findings of the study, which have been further endorsed by 184 organizations globally, include points of unanimous agreement, as well as six recommendations with >5% disagreement, that provide health and social policy actions to address inadequacies in the pandemic response and help to bring this public health threat to an end.

Read the full article at: www.nature.com

Urban Mobility

Laura Alessandretti, Michael Szell
In this chapter, we discuss urban mobility from a complexity science perspective. First, we give an overview of the datasets that enable this approach, such as mobile phone records, location-based social network traces, or GPS trajectories from sensors installed on vehicles. We then review the empirical and theoretical understanding of the properties of human movements, including the distribution of travel distances and times, the entropy of trajectories, and the interplay between exploration and exploitation of locations. Next, we explain generative and predictive models of individual mobility, and their limitations due to intrinsic limits of predictability. Finally, we discuss urban transport from a systemic perspective, including system-wide challenges like ridesharing, multimodality, and sustainable transport.

Read the full article at: arxiv.org

Autocatalytic Sets Arising in a Combinatorial Model of Chemical Evolution

Wim Hordijk, Mike Steel, and Stuart Kauffman

Life 2022, 12(11), 1703;

The idea that chemical evolution led to the origin of life is not new, but still leaves open the question of how exactly it could have led to a coherent and self-reproducing collective of molecules. One possible answer to this question was proposed in the form of the emergence of an autocatalytic set: a collection of molecules that mutually catalyze each other’s formation and that is self-sustaining given some basic “food” source. Building on previous work, here we investigate in more detail when and how autocatalytic sets can arise in a simple model of chemical evolution based on the idea of combinatorial innovation with random catalysis assignments. We derive theoretical results, and compare them with computer simulations. These results could suggest a possible step towards the (or an) origin of life.

Read the full article at: www.mdpi.com

Collective gradient perception with a flying robot swarm

Tugay Alperen Karagüzel, Ali Emre Turgut, A. E. Eiben & Eliseo Ferrante
Swarm Intelligence (2022)

In this paper, we study the problem of collective and emergent sensing with a flying robot swarm in which social interactions among individuals lead to following the gradient of a scalar field in the environment without the need of any gradient sensing capability. We proposed two methods—desired distance modulation and speed modulation—with and without alignment control. In the former, individuals modulate their desired distance to their neighbors and in the latter, they modulate their speed depending on the social interactions with their neighbors and measurements from the environment. Methods are systematically tested using two metrics with different scalar field models, swarm sizes and swarm densities. Experiments are conducted using: (1) a kinematic simulator, (2) a physics-based simulator, and (3) real nano-drone swarm. Results show that using the proposed methods, a swarm—composed of individuals lacking gradient sensing ability—is able to follow the gradient in a scalar field successfully. Results show that when individuals modulate their desired distances, alignment control is not needed but it still increases the performance. However, when individuals modulate their speed, alignment control is needed for collective motion. Real nano-drone experiments reveal that the proposed methods are applicable in real-life scenarios.

Read the full article at: link.springer.com