Month: March 2020

School closures, event cancellations, and the mesoscopic localization of epidemics in networks with higher-order structure

The COVID-19 epidemic is challenging in many ways, perhaps most obvious are failures of the surveillance system. Consequently, the official intervention has focused on conventional wisdom — social distancing, hand washing, etc. — while critical decisions such as the cancellation of large events like festivals, workshops and academic conferences are done on a case-by-case basis with limited information about local risks. Adding to this uncertainty is the fact that our mathematical models tend to assume some level of random mixing patterns instead of the higher-order structures necessary to describe these large events. Here, we discuss a higher-order description of epidemic dynamics on networks that provides a natural way of extending common models to interaction beyond simple pairwise contacts. We show that unlike the classic diffusion of standard epidemic models, higher-order interactions can give rise to mesoscopic localization, i.e., a phenomenon in which there is a concentration of the epidemic around certain substructures in the network. We discuss the implications of these results and show the potential impact of a blanket cancellation of events larger than a certain critical size. Unlike standard models of delocalized dynamics, epidemics in a localized phase can suddenly collapse when facing an intervention operating over structures rather than individuals.

 

Guillaume St-Onge, Vincent Thibeault, Antoine Allard, Louis J. Dubé, Laurent Hébert-Dufresne

Source: arxiv.org

Evolving Always-Critical Networks

Marco Villani , Salvatore Magrì, Andrea Roli and Roberto Serra

 

Living beings share several common features at the molecular level, but there are very few large-scale “operating principles” which hold for all (or almost all) organisms. However, biology is subject to a deluge of data, and as such, general concepts such as this would be extremely valuable. One interesting candidate is the “criticality” principle, which claims that biological evolution favors those dynamical regimes that are intermediaries between ordered and disordered states (i.e., “at the edge of chaos”). The reasons why this should be the case and experimental evidence are briefly discussed, observing that gene regulatory networks are indeed often found on, or close to, the critical boundaries. Therefore, assuming that criticality provides an edge, it is important to ascertain whether systems that are critical can further evolve while remaining critical. In order to explore the possibility of achieving such “always-critical” evolution, we resort to simulated evolution, by suitably modifying a genetic algorithm in such a way that the newly-generated individuals are constrained to be critical. It is then shown that these modified genetic algorithms can actually develop critical gene regulatory networks with two interesting (and quite different) features of biological significance, involving, in one case, the average gene activation values and, in the other case, the response to perturbations. These two cases suggest that it is often possible to evolve networks with interesting properties without losing the advantages of criticality. The evolved networks also show some interesting features which are discussed.

Source: www.mdpi.com

Concepts in Boolean network modeling: What do they all mean?

Julian D. Schwab, Silke D. Kühlwein, Nensi Ikonomi, Michael Kühl, Hans A. Kestler

Computational and Structural Biotechnology Journal

 

Boolean network models are one of the simplest models to study complex dynamic behavior in biological systems. They can be applied to unravel the mechanisms regulating the properties of the system or to identify promising intervention targets. Since its introduction by Stuart Kauffman in 1969 for describing gene regulatory networks, various biologically based networks and tools for their analysis were developed. Here, we summarize and explain the concepts for Boolean network modeling. We also present application examples and guidelines to work with and analyze Boolean network models.

Source: www.sciencedirect.com

Effect of non-pharmaceutical interventions for containing the COVID-19 outbreak: an observational and modelling study

Shengjie Lai, Nick W Ruktanonchai, Liangcai Zhou, Olivia Prosper, Wei Luo, Jessica R Floyd, Amy Wesolowski, Chi Zhang, Xiangjun Du, Hongjie Yu, Andrew J Tatem

 

Background: The COVID-19 outbreak containment strategies in China based on non-pharmaceutical interventions (NPIs) appear to be effective. Quantitative research is still needed however to assess the efficacy of different candidate NPIs and their timings to guide ongoing and future responses to epidemics of this emerging disease across the World. Methods: We built a travel network-based susceptible-exposed-infectious-removed (SEIR) model to simulate the outbreak across cities in mainland China. We used epidemiological parameters estimated for the early stage of outbreak in Wuhan to parameterise the transmission before NPIs were implemented. To quantify the relative effect of various NPIs, daily changes of delay from illness onset to the first reported case in each county were used as a proxy for the improvement of case identification and isolation across the outbreak. Historical and near-real time human movement data, obtained from Baidu location-based service, were used to derive the intensity of travel restrictions and contact reductions across China. The model and outputs were validated using daily reported case numbers, with a series of sensitivity analyses conducted. Findings: We estimated that there were a total of 114,325 COVID-19 cases (interquartile range [IQR] 76,776 – 164,576) in mainland China as of February 29, 2020, and these were highly correlated (p<0.001, R2=0.86) with reported incidence. Without NPIs, the number of COVID-19 cases would likely have shown a 67-fold increase (IQR: 44 – 94), with the effectiveness of different interventions varying. The early detection and isolation of cases was estimated to prevent more infections than travel restrictions and contact reductions, but integrated NPIs would achieve the strongest and most rapid effect. If NPIs could have been conducted one week, two weeks, or three weeks earlier in China, cases could have been reduced by 66%, 86%, and 95%, respectively, together with significantly reducing the number of affected areas. However, if NPIs were conducted one week, two weeks, or three weeks later, the number of cases could have shown a 3-fold, 7-fold, and 18-fold increase across China, respectively. Results also suggest that the social distancing intervention should be continued for the next few months in China to prevent case numbers increasing again after travel restrictions were lifted on February 17, 2020. Conclusion: The NPIs deployed in China appear to be effectively containing the COVID-19 outbreak, but the efficacy of the different interventions varied, with the early case detection and contact reduction being the most effective. Moreover, deploying the NPIs early is also important to prevent further spread. Early and integrated NPI strategies should be prepared, adopted and adjusted to minimize health, social and economic impacts in affected regions around the World.

Source: www.medrxiv.org

Landmark Computer Science Proof Cascades Through Physics and Math

In 1935, Albert Einstein, working with Boris Podolsky and Nathan Rosen, grappled with a possibility revealed by the new laws of quantum physics: that two particles could be entangled, or correlated, even across vast distances.

The very next year, Alan Turing formulated the first general theory of computing and proved that there exists a problem that computers will never be able to solve.

These two ideas revolutionized their respective disciplines. They also seemed to have nothing to do with each other. But now a landmark proof has combined them while solving a raft of open problems in computer science, physics and mathematics.

Source: www.quantamagazine.org