Month: February 2020

Enhanced Ability of Information Gathering May Intensify Disagreement Among Groups

Hiroki Sayama

 

Today’s society faces widening disagreement and conflicts among constituents with incompatible views. Escalated views and opinions are seen not only in radical ideology or extremism but also in many other scenes of our everyday life. Here we show that widening disagreement among groups may be linked to the advancement of information communication technology, by analyzing a mathematical model of population dynamics in a continuous opinion space. We adopted the interaction kernel approach to model enhancement of people’s information gathering ability and introduced a generalized non-local gradient as individuals’ perception kernel. We found that the characteristic distance between population peaks becomes greater as the wider range of opinions becomes available to individuals or the greater attention is attracted to opinions distant from theirs. These findings may provide a possible explanation for why disagreement is growing in today’s increasingly interconnected society, without attributing its cause only to specific individuals or events.

Source: arxiv.org

Antifragility Predicts the Robustness and Evolvability of Biological Networks through Multi-class Classification with a Convolutional Neural Network

Hyobin Kim, Stalin Muñoz, Pamela Osuna, Carlos Gershenson

 

Robustness and evolvability are essential properties to the evolution of biological networks. To determine if a biological network is robust and/or evolvable, the comparison of its functions before and after mutations is required. However, it has an increasing computational cost as network size grows. Here we aim to develop a predictor to estimate the robustness and evolvability of biological networks without an explicit comparison of functions. We measure antifragility in Boolean network models of biological systems and use this as the predictor. Antifragility is a property to improve the capability of a system through external perturbations. By means of the differences of antifragility between the original and mutated biological networks, we train a convolutional neural network (CNN) and test it to classify the properties of robustness and evolvability. We found that our CNN model successfully classified the properties. Thus, we conclude that our antifragility measure can be used as a significant predictor of the robustness and evolvability of biological networks.

Source: arxiv.org

Are living beings extended autopoietic systems? An embodied reply

Mario Villalobos, Pablo Razeto-Barry

Adaptive Behavior Vol 28, Issue 1, 2020

 

Building on the original formulation of the autopoietic theory (AT), extended enactivism argues that living beings are autopoietic systems that extend beyond the spatial boundaries of the organism. In this article, we argue that extended enactivism, despite having some basis in AT’s original formulation, mistakes AT’s definition of living beings as autopoietic entities. We offer, as a reply to this interpretation, a more embodied reformulation of autopoiesis, which we think is necessary to counterbalance the (excessively) disembodied spirit of AT’s original formulation. The article aims to clarify and correct what we take to be a misinterpretation of AT as a research program. AT, contrary to what some enactivists seem to believe, did not (and does not) intend to motivate an extended conception of living beings. AT’s primary purpose, we argue, was (and is) to provide a universal individuation criterion for living beings, these understood as discrete bodies that are embedded in, but not constituted by, the environment that surrounds them. However, by giving a more explicitly embodied definition of living beings, AT can rectify and accommodate, so we argue, the enactive extended interpretation of autopoiesis, showing that although living beings do not extend beyond their boundaries as autopoietic unities, they do form part, in normal conditions, of broader autopoietic systems that include the environment.

Source: journals.sagepub.com

This is a Target Article. See Also: Opinions and Reply

OSoMe Research Scientist Wanted

We are looking for a research scientist to help run the Observatory on Social Media (OSoMe, pronounced awe•some) at Indiana University Bloomington (IUB). The official title of the position is Senior Project Coordinator (SPC). The Senior Project Coordinator will join the OSoMe senior management team — director Filippo Menczer, co-directors for research Betsi Grabe and Alessandro Flammini, co-directors for education Elaine Monaghan and John Paolillo, Dean James Shahahan, and associate director for technology Val Pentchev. The mission of the Observatory, which recently received a $6 million investment from the John S. and James L. Knight Foundation and Indiana University, is to study the media and technology networks that drive the online diffusion of dis/mis/information. OSoMe offers access to data and tools for researchers worldwide to uncover the vulnerabilities of the media ecosystem and develops methods for increasing the resilience of citizens and democratic systems to manipulation.

Source: cnets.indiana.edu

A First Course in Network Science

The book A First Course in Network Science by CNetS faculty members Filippo Menczer and Santo Fortunato and CNetS PhD graduate Clayton A. Davis was recently published by Cambridge University Press. This textbook introduces the basics of network science for a wide range of job sectors from management to marketing, from biology to engineering, and from neuroscience to the social sciences. Extensive tutorials, datasets, and homework problems provide plenty of hands-on practice. The book has been endorsed as “Rigorous” (Alessandro Vespignani), “comprehensive… indispensable” (Olaf Sporns), “with remarkable clarity and insight” (Brian Uzzi), “accessible” (Albert-László Barabási), “amazing… extraordinary” (Alex Arenas), and “sophisticated yet introductory… an excellent introduction that is also eminently practical” (Stephen Borgatti). It was ranked by Amazon #1 among new releases in mathematical physics.

Source: cnets.indiana.edu