Month: May 2018

CSS Junior Scientific Awards 2018

The CSS promotes the Junior Scientific Award to recognize the excellence in the scientific career of young CSS members. It will be awarded once a year to a maximum of two young researchers (up to ten years after PhD completion) who have achieved outstanding results in complexity science in any of the areas representative of the CSS.

Source: cssociety.org

BrainComputing: Theoretical Neuroscience and its Applications, CCS18 Satellite

Neuroscience is a highly interdisciplinary field focused on uncovering the dynamics of brain and, more in general, the complex functions and structures of neural systems. These topics constitute paradigmatic examples of complex systems, and can be studied by using different frameworks, spanning from nonlinear dynamics to complex networks. In addition, the increasing availability of data coming from tools like fMRI, EEG, and others, has strongly supported new investigations. At the same time, although these topics are maybe among mostly investigated in science, a lot must yet be discovered. Remarkably, neural systems have had a great impact also in parallel fields, e.g. artificial intelligence, leading to propose new algorithms and computational techniques. For instance, neural networks and their evolution to the modern deep learning represent one of the most successful cases. It is worth to highlight that some of these tools (e.g. Deep Learning) are now widely used for investigating (biological) neural systems, e.g. for analyzing brain waves. As result, a big interdisciplinary community composed of neuroscientists, physicists, mathematicians, computer scientists, and many others, nowadays collaborates on the same projects and interacts trying to obtain new insights in this complex and exciting field. The proposed satellite will be focused on theoretical neuroscience, and its extensions to AI/Deep Learning, in order to attract the interest of researchers working in a highly interdisciplinary contexts, often overlapping, with the aim to trigger discussions and sharing novel ideas on the field. In particular, we aim to have a specific focus on the synopsis of current research into complex networks in human neuroscience, supported by data coming from fMRI/EEG/etc, on the complexity emerging in artificial neural networks, and on the potential synergy between the two fields.

Source: www.braincomputing-satellite.com

10 Breakthrough Technologies Making Promising Progress in 2018

Dueling neural networks. Artificial embryos. AI in the cloud. Welcome to our annual list of the 10 technology advances we think will shape the way we work and live now and for years to come.

 

Every year since 2001 the people at Technology Review have picked what they call the 10 Breakthrough Technologies. People often ask, what exactly is meant by “breakthrough”? It’s a reasonable question—some of the picks haven’t yet reached widespread use, while others may be on the cusp of becoming commercially available. What Technology Review is really looking for is a technology, or perhaps even a collection of technologies, that will have a profound effect on our lives.

 

For 2018, a new technique in artificial intelligence called GANs is giving machines imagination; artificial embryos, despite some thorny ethical constraints, are redefining how life can be created and are opening a research window into the early moments of a human life; and a pilot plant in the heart of Texas’s petrochemical industry is attempting to create completely clean power from natural gas—probably a major energy source for the foreseeable future.

Source: www.technologyreview.com

The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior

The reproductive potential of pathogens is linked inextricably to the host social behavior required for transmission. We propose that future work should consider contact periodicity in models of disease dynamics, and suggest the possibility that disease control strategies may be designed to optimize against the effects of synchronization.

 

The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior
Ewan ColmanEmail author, Kristen Spies and Shweta Bansal
BMC Infectious Diseases201818:219
https://doi.org/10.1186/s12879-018-3117-6

Source: bmcinfectdis.biomedcentral.com

How Networks Learn An Interview with Cesar Hidalgo

In this episode, Haley talks with physicist, complexity scientist, and MIT professor, Cesar Hidalgo. Hidalgo discusses his interest in the physics of networks and complex system science and shares why he believes these fields are so important. He talks about his book, Why Information Grows: The Evolution of Order, from Atoms to Economies, which takes a scientific look at global economic complexity. Hidalgo also shares how economic development is linked to making networks more knowledgeable.

Source: www.human-current.com