Month: November 2016

Traffic Games: Modeling Freeway Traffic with Game Theory

We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers’ interactions.

 

Cortés-Berrueco LE, Gershenson C, Stephens CR (2016) Traffic Games: Modeling Freeway Traffic with Game Theory. PLoS ONE 11(11): e0165381. doi:10.1371/journal.pone.0165381

Source: journals.plos.org

Vocal Interactivity in-and-between Humans, Animals, and Robots

Almost all animals exploit vocal signals for a range of ecologically motivated purposes: detecting predators/prey and marking territory, expressing emotions, establishing social relations, and sharing information. Whether it is a bird raising an alarm, a whale calling to potential partners, a dog responding to human commands, a parent reading a story with a child, or a business-person accessing stock prices using Siri, vocalization provides a valuable communication channel through which behavior may be coordinated and controlled, and information may be distributed and acquired. Indeed, the ubiquity of vocal interaction has led to research across an extremely diverse array of fields, from assessing animal welfare, to understanding the precursors of human language, to developing voice-based human–machine interaction. Opportunities for cross-fertilization between these fields abound; for example, using artificial cognitive agents to investigate contemporary theories of language grounding, using machine learning to analyze different habitats or adding vocal expressivity to the next generation of language-enabled autonomous social agents. However, much of the research is conducted within well-defined disciplinary boundaries, and many fundamental issues remain. This paper attempts to redress the balance by presenting a comparative review of vocal interaction within-and-between humans, animals, and artificial agents (such as robots), and it identifies a rich set of open research questions that may benefit from an interdisciplinary analysis.

 

Vocal Interactivity in-and-between Humans, Animals, and Robots
Roger K. Moore, Ricard Marxer and Serge Thill

Front. Robot. AI, 25 October 2016 | http://dx.doi.org/10.3389/frobt.2016.00061

Source: journal.frontiersin.org

Twitter Predicts Citation Rates of Ecological Research

The relationship between traditional metrics of research impact (e.g., number of citations) and alternative metrics (altmetrics) such as Twitter activity are of great interest, but remain imprecisely quantified. We used generalized linear mixed modeling to estimate the relative effects of Twitter activity, journal impact factor, and time since publication on Web of Science citation rates of 1,599 primary research articles from 20 ecology journals published from 2012–2014. We found a strong positive relationship between Twitter activity (i.e., the number of unique tweets about an article) and number of citations. Twitter activity was a more important predictor of citation rates than 5-year journal impact factor. Moreover, Twitter activity was not driven by journal impact factor; the ‘highest-impact’ journals were not necessarily the most discussed online. The effect of Twitter activity was only about a fifth as strong as time since publication; accounting for this confounding factor was critical for estimating the true effects of Twitter use. Articles in impactful journals can become heavily cited, but articles in journals with lower impact factors can generate considerable Twitter activity and also become heavily cited. Authors may benefit from establishing a strong social media presence, but should not expect research to become highly cited solely through social media promotion. Our research demonstrates that altmetrics and traditional metrics can be closely related, but not identical. We suggest that both altmetrics and traditional citation rates can be useful metrics of research impact.

 

Peoples BK, Midway SR, Sackett D, Lynch A, Cooney PB (2016) Twitter Predicts Citation Rates of Ecological Research. PLoS ONE 11(11): e0166570. doi:10.1371/journal.pone.0166570

Source: journals.plos.org

Complex systems: physics beyond physics

Complex systems are characterized by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behavior. Examples arise both in the physical and non-physical world. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicist’s point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualized in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new land for physicists to explore and that methodical and conceptual progress is needed most.

 

Complex systems: physics beyond physics

Yurij Holovatch, Ralph Kenna, Stefan Thurner

Source: arxiv.org

Scaling Law of Urban Ride Sharing

Sharing rides could drastically improve the efficiency of car and taxi transportation. Unleashing such potential, however, requires understanding how urban parameters affect the fraction of individual trips that can be shared, a quantity that we call shareability. Using data on millions of taxi trips in New York City, San Francisco, Singapore, and Vienna, we compute the shareability curves for each city, and find that a natural rescaling collapses them onto a single, universal curve. We explain this scaling law theoretically with a simple model that predicts the potential for ride sharing in any city, using a few basic urban quantities and no adjustable parameters. Accurate extrapolations of this type will help planners, transportation companies, and society at large to shape a sustainable path for urban growth.

 

Scaling Law of Urban Ride Sharing

Remi Tachet, Oleguer Sagarra, Paolo Santi, Giovanni Resta, Michael Szell, Steven Strogatz, Carlo Ratti

Source: arxiv.org