Month: September 2016

Convergence of Self-Organizing Pulse-Coupled Oscillator Synchronization in Dynamic Networks

The theory of pulse-coupled oscillators provides a framework to formulate and develop self-organizing synchronization strategies for wireless communications and mobile computing. These strategies show low complexity and are adaptive to changes in the network. Even though several protocols have been proposed and theoretical insight was gained there is no proof that guarantees synchronization of the oscillator phases in general dynamic coupling topologies under technological constraints. Here, we introduce a family of coupling strategies for pulse-coupled oscillators and prove that synchronization emerges for systems with arbitrary connected and dynamic topologies, individually changing signal propagation and processing delays, and stochastic pulse emission. It is shown by simulations how unreliable links or intentionally incomplete communication between oscillators can improve synchronization performance.

 

Convergence of Self-Organizing Pulse-Coupled Oscillator Synchronization in Dynamic Networks

Johannes Klinglmayr ; Christian Bettstetter ; Marc Timme ; Christoph Kirst

IEEE Transactions on Automatic Control. Scheduled for August 2017.
http://dx.doi.org/10.1109/TAC.2016.2593642

Source: ieeexplore.ieee.org

Adaptive Cities: A Cybernetic Perspective on Urban Systems

Cities are changing constantly. All urban systems face different conditions from day to day. Even when averaged regularities can be found, urban systems will be more efficient if they can adapt to changes at the same speeds at which these occur. Technology can assist humans in achieving this adaptation. Inspired by cybernetics, we propose a description of cities as adaptive systems. We identify three main components: information, algorithms, and agents, which we illustrate with current and future examples. The implications of adaptive cities are manifold, with direct impacts on mobility, sustainability, resilience, governance, and society. Still, the potential of adaptive cities will not depend so much on technology as on how we use it.

 

Adaptive Cities: A Cybernetic Perspective on Urban Systems
Carlos Gershenson, Paolo Santi, Carlo Ratti

Source: arxiv.org

Joint estimation of preferential attachment and node fitness in growing complex networks

Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.

 

Joint estimation of preferential attachment and node fitness in growing complex networks
Thong Pham, Paul Sheridan & Hidetoshi Shimodaira
Scientific Reports 6, Article number: 32558 (2016)
doi:10.1038/srep32558

Source: www.nature.com

Coupled dynamics of node and link states in complex networks: A model for language competition

Inspired by language competition processes, we present a model of coupled evolution of node and link states. In particular, we focus on the interplay between the use of a language and the preference or attitude of the speakers towards it, which we model, respectively, as a property of the interactions between speakers (a link state) and as a property of the speakers themselves (a node state). Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially inspired network topologies based on a mechanism of triadic closure. As opposed to most of the previous literature, where language extinction is an inevitable outcome of the dynamics, we find a broad range of possible asymptotic configurations, which we classify as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states. Moreover, metastable coexistence states with very long survival times and displaying a non-trivial dynamics are found to be abundant. Interestingly, a system size scaling analysis shows, on the one hand, that the probability of language extinction vanishes exponentially for increasing system sizes and, on the other hand, that the time scale of survival of the non-trivial dynamical metastable states increases linearly with the size of the system. Thus, non-trivial dynamical coexistence is the only possible outcome for large enough systems. Finally, we show how this coexistence is characterized by one of the languages becoming clearly predominant while the other one becomes increasingly confined to “ghetto-like” structures: small groups of bilingual speakers arranged in triangles, with a strong preference for the minority language, and using it for their intra-group interactions while they switch to the predominant language for communications with the rest of the population.

 

Coupled dynamics of node and link states in complex networks: A model for language competition
Adrián Carro, Raúl Toral, Maxi San Miguel

Source: arxiv.org

Node-independent elementary signaling modes: A measure of redundancy in Boolean signaling transduction networks 

The redundancy of a system denotes the amount of duplicate components or mechanisms in it. For a network, especially one in which mass or information is being transferred from an origin to a destination, redundancy is related to the robustness of the system. Existing network measures of redundancy rely on local connectivity (e.g. clustering coefficients) or the existence of multiple paths. As in many systems there are functional dependencies between components and paths, a measure that not only characterizes the topology of a network, but also takes into account these functional dependencies, becomes most desirable.
We propose a network redundancy measure in a prototypical model that contains functionally dependent directed paths: a Boolean model of a signal transduction network. The functional dependencies are made explicit by using an expanded network and the concept of elementary signaling modes (ESMs). We define the redundancy of a Boolean signal transduction network as the maximum number of node-independent ESMs and develop a methodology for identifying all maximal node-independent ESM combinations. We apply our measure to a number of signal transduction network models and show that it successfully distills known properties of the systems and offers new functional insights. The concept can be easily extended to similar related forms, e.g. edge-independent ESMs.

 

Node-independent elementary signaling modes: A measure of redundancy in Boolean signaling transduction networks
ZHONGYAO SUN, RÉKA ALBERT
Network Science , Volume 4 , Issue 03 , September 2016, pp 273 – 292
doi: 10.1017/nws.2016.4

Source: www.cambridge.org