Measuring Molecular Complexity

Louie Slocombe and Sara Imari Walker

​ACS Cent. Sci. 2024

In a scientific era focused on big data, it is easy to lose sight of the critical role of metrology─the science of measurement─in advancing fundamental science. However, most major scientific advances have been driven by progress in what we measure and how we measure it. An example is the invention of temperature, (1) where before it, we could say one thing was hotter than another but without a standardized, empirical measure we could not say how much hotter. This is not unlike the current state in discussing complexity in chemistry, (2,3) where we can say molecules are complex but lack an empirically validated standardization to confirm that one is more complex than another. In this issue of ACS Central Science, (4) a set of experiments by Leroy Cronin and co-workers conducted at the University of Glasgow aim to change this by providing a new kind of measurement with a well-defined scale, a significant step toward a metrology of complexity in chemistry. Although the concept of quantifying molecular complexity is not new itself, (3) the team leveraged principles from the recently developed theory of molecular assembly (MA) and related ideas (5) to define a rigorous concept of a scale for complexity, connected to a theory for how evolution builds complex molecules. (6,7) They show how the complexity of molecules on this scale can be inferred from standard laboratory spectroscopic techniques, including nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and tandem mass spectrometry (MS/MS). The robust validation of the inferred complexity across a multimodal suite of techniques instills confidence in the objectivity of the complexity scale proposed and the reliability of its resultant measurement.

Read the full article at: pubs.acs.org

An Informational Approach to Emergence

Claudio Gnoli

Volume 29, pages 543–551, (2024)

Emergence can be described as a relationship between entities at different levels of organization, that looks especially puzzling at the transitions between the major levels of matter, life, cognition and culture. Indeed, each major level is dependent on the lower one not just for its constituents, but in some more formal way. A passage by François Jacob suggests that all such evolutionary transitions are associated with the appearance of some form of memory–genetic, neural or linguistic respectively. This implies that they have an informational nature. Based on this idea, we propose a general model of informational systems understood as combinations of modules taken from a limited inventory. Some informational systems are “semantic” models, that is reproduce features of their environment. Among these, some are also “informed”, that is have a pattern derived from a memory subsystem. The levels and components of informed systems can be listed to provide a general framework for knowledge organization, of relevance in both philosophical ontology and applied information services.

Read the full article at: link.springer.com

Editorial: Understanding and engineering cyber-physical collectives

Roberto Casadei, Lukas Esterle, Rose Gamble, Paul Harvey, and Elizabeth F. Wanner

Front. Robot. AI, 06 May 2024

Cyber-physical collectives (CPCs) are systems consisting of groups of interactive computational devices situated in physical space. Their emergence is fostered by recent techno-scientific trends like the Internet of Things (IoT), cyber-physical systems (CPSs), pervasive computing, and swarm robotics. Such systems feature networks of devices that are capable of computation and communication with other devices, as well as sensing, actuation, and physical interaction with their environment. This distributed sensing, processing, and action enables them to address spatially situated problems and provide environment-wide services through their collective intelligence (CI) in a wide range of domains including smart homes, buildings, factories, cities, forests, oceans, and so on. However, the inherent complexity of such systems in terms of heterogeneity, scale, non-linear interaction, and emergent behaviour calls for scientific and engineering ideas, methods, and tools (cf. Wirsing et al. (2023); Dorigo et al. (2021); Brambilla et al. (2013); Casadei (2023a; b)). This Research Topic gathers contributions related to understanding and engineering cyber-physical collectives.

Read the full article at: www.frontiersin.org

Symmetry breaking in optimal transport networks

Siddharth Patwardhan, Marc Barthelemy, Şirag Erkol, Santo Fortunato & Filippo Radicchi
Nature Communications volume 15, Article number: 3758 (2024)

Engineering multilayer networks that efficiently connect sets of points in space is a crucial task in all practical applications that concern the transport of people or the delivery of goods. Unfortunately, our current theoretical understanding of the shape of such optimal transport networks is quite limited. Not much is known about how the topology of the optimal network changes as a function of its size, the relative efficiency of its layers, and the cost of switching between layers. Here, we show that optimal networks undergo sharp transitions from symmetric to asymmetric shapes, indicating that it is sometimes better to avoid serving a whole area to save on switching costs. Also, we analyze the real transportation networks of the cities of Atlanta, Boston, and Toronto using our theoretical framework and find that they are farther away from their optimal shapes as traffic congestion increases.

Read the full article at: www.nature.com

Accurate structure prediction of biomolecular interactions with AlphaFold 3

Abramson, J., Adler, J., Dunger, J. et al.

Nature (2024).

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design. In this paper, we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture, which is capable of joint structure prediction of complexes including proteins, nucleic acids, small molecules, ions, and modified residues. The new AlphaFold model demonstrates significantly improved accuracy over many previous specialised tools: far greater accuracy on protein-ligand interactions than state of the art docking tools, much higher accuracy on protein-nucleic acid interactions than nucleic-acid-specific predictors, and significantly higher antibody-antigen prediction accuracy than AlphaFold-Multimer v2.3. Together these results show that high accuracy modelling across biomolecular space is possible within a single unified deep learning framework.

Read the full article at: www.nature.com