Tag: adaptive systems

Is the cultural evolution of technology cumulative or combinatorial?

Explanations of human technology often point to both its cumulative and combinatorial character. Using a novel computational framework, where individual agents attempt to solve problems by modifying, combining and transmitting technologies in an open-ended search space, this paper re-evaluates two prominent explanations for the cultural evolution of technology: that humans are equipped with (i) social learning mechanisms for minimizing information loss during transmission, and (ii) creative mechanisms for generating novel technologies via combinatorial innovation. Here, both information loss and combinatorial innovation are introduced as parameters in the model, and then manipulated to approximate situations where technological evolution is either more cumulative or combinatorial. Compared to existing models, which tend to marginalize the role of purposeful problem-solving, this approach allows for indefinite growth in complexity while directly simulating constraints from history and computation. The findings show that minimizing information loss is only required when the dynamics are strongly cumulative and characterised by incremental innovation. Contrary to previous findings, when agents are equipped with a capacity for combinatorial innovation, low levels of information loss are neither necessary nor sufficient for populations to solve increasingly complex problems. Instead, higher levels of information loss are advantageous for unmasking the potential for combinatorial innovation. This points to a parsimonious explanation for the cultural evolution of technology without invoking separate mechanisms of stability and creativity.

Source: osf.io

Towards Social Capital in a Network Organization: A Conceptual Model and an Empirical Approach

 Saad Alqithami, Rahmat Budiarto, Musaad Alzahrani and Henry Hexmoor

Entropy 2020, 22(5), 519

 

Due to the complexity of an open multi-agent system, agents’ interactions are instantiated spontaneously, resulting in beneficent collaborations with one another for mutual actions that are beyond one’s current capabilities. Repeated patterns of interactions shape a feature of their organizational structure when those agents self-organize themselves for a long-term objective. This paper, therefore, aims to provide an understanding of social capital in organizations that are open membership multi-agent systems with an emphasis in our formulation on the dynamic network of social interactions that, in part, elucidate evolving structures and impromptu topologies of networks. We model an open source project as an organizational network and provide definitions and formulations to correlate the proposed mechanism of social capital with the achievement of an organizational charter, for example, optimized productivity. To empirically evaluate our model, we conducted a case study of an open source software project to demonstrate how social capital can be created and measured within this type of organization. The results indicate that the values of social capital are positively proportional towards optimizing agents’ productivity into successful completion of the project.

Source: www.mdpi.com