Author: cxdig

Physical foundations of biological complexity

Living organisms are characterized by a degree of hierarchical complexity that appears to be inaccessible to even the most complex inanimate objects. Routes and patterns of the evolution of complexity are poorly understood. We propose a general conceptual framework for emergence of complexity through competing interactions and frustrated states similar to those that yield patterns in striped glasses and cause self-organized criticality. We show that biological evolution is replete with competing interactions and frustration that, in particular, drive major transitions in evolution. The key distinction between biological and nonbiological systems seems to be the existence of long-term digital memory and phenotype-to-genotype feedback in living matter.


Yuri I. Wolf, Mikhail I. Katsnelson, and Eugene V. Koonin
PNAS September 11, 2018 115 (37) E8678-E8687; published ahead of print August 27, 2018


Gaia 2.0

According to Lovelock and Margulis’s Gaia hypothesis, living things are part of a planetary-scale self-regulating system that has maintained habitable conditions for the past 3.5 billion years (1, 2). Gaia has operated without foresight or planning on the part of organisms, but the evolution of humans and their technology are changing that. Earth has now entered a new epoch called the Anthropocene (3), and humans are beginning to become aware of the global consequences of their actions. As a result, deliberate self-regulation—from personal action to global geoengineering schemes—is either happening or imminently possible. Making such conscious choices to operate within Gaia constitutes a fundamental new state of Gaia, which we call Gaia 2.0. By emphasizing the agency of life-forms and their ability to set goals, Gaia 2.0 may be an effective framework for fostering global sustainability.


Gaia 2.0
Timothy M. Lenton, Bruno Latour
Science  14 Sep 2018:
Vol. 361, Issue 6407, pp. 1066-1068
DOI: 10.1126/science.aau0427


Physics of humans, physics for society

Today, the massive use of information and communication technologies (ICT) has made it possible to attach a traceable set of data to almost any person. We argue that these data provide the opportunity to build a ‘physics of society’: describing a society — composed of many interacting heterogeneous entities (people, businesses, institutions) — as a physical system. While important ethical implications have to be taken into account, the benefits in developing such physics of society would be tremendous. Indeed, it could help understanding, anticipating and forecasting future societal trends and human behavioural responses, and their associated uncertainty; or address societal challenges in which globally networked risks play a role. A case in point is modern epidemiology and its success in predicting the large-scale spreading of infectious diseases.


Physics of humans, physics for society
Guido Caldarelli, Sarah Wolf & Yamir Moreno 
Nature Physics volume 14, page 870 (2018)