Guided self-organization through an entropy-based self-advising approach

Somayeh Kalantari, Eslam Nazemi & Behrooz Masoumi
Computing (2022)

Nowadays, the study of self-organizing systems has attracted much attention. However, since these systems are run in dynamic, changing, and evolving environments, it is possible that undesirable behaviors that are contrary to the system goals occur. Therefore, it is necessary to provide mechanisms to guide the self-organizing system. However, several approaches were proposed to guide self-organizing systems, more effective approaches are required due to the variation of the contexts in which they are deployed and their complexity. This paper aims to use the self-advising property to provide guidelines about the context of self-organizing systems. The agents of these systems are guided implicitly by using the guidelines provided. In the proposed approach, contextual data is made by an advisor agent that produces them based on the agents’ behavioral entropy. The proposed approach is evaluated using a case study based on the NASA ANTS mission. According to experiments, the proposed approach causes adaptation activities’ costs to decrease at all radio ranges. Besides, in some radio ranges, i.e., 110 and 120 GHz, the guiding state’s adaptive time is less than the no-guiding state’s adaptive time. The evaluations also show that the ruler agents’ mean entropy in the guiding state is less than the no-guiding state in 75 % of radio ranges. This approach’s success in reducing the agents’ entropy indicates its ability to guide self-organizing systems.

Read the full article at: