Self-organized multistability in the forest fire model

Diego Rybski, Van Butsic, and Jan W. Kantelhardt

Phys. Rev. E 104, L012201 – Published 29 July 2021

The forest fire model in statistical physics represents a paradigm for systems close to but not completely at criticality. For large tree growth probabilities p we identify periodic attractors, where the tree density ρ oscillates between discrete values. For lower p this self-organized multistability persists with incrementing numbers of states. Even at low p the system remains quasiperiodic with a frequency ≈p on the way to chaos. In addition, the power-spectrum shows 1/f^2 scaling (Brownian noise) at the low frequencies f, which turns into white noise for very long simulation times.

Read the full article at: link.aps.org