Emergence of cooperative bistability and robustness of gene regulatory networks

Nagata S, Kikuchi M (2020) Emergence of cooperative bistability and robustness of gene regulatory networks. PLoS Comput Biol 16(6): e1007969. https://doi.org/10.1371/journal.pcbi.1007969


Living systems have developed through a long history of Darwinian evolution. They acquired characteristic properties distinct from other physical systems; one is biological function. Another important property, which is overlooked by non-experts, is robustness to noise and mutation. Here, robustness means that a system does not lose its functionality when exposed to disturbances. Then, how do they relate to each other? In this paper, we explored this question using a toy model of gene regulatory networks (GRNs). While evolutionary simulations are usually used for such purposes, we instead generated GRNs randomly and classified them according to functionality. By requiring sensitive responses to environmental change as a function, we found that bistability emerges as a common property of highly-functional GRNs. Since this property does not depend on a particular evolutionary pathway, if the evolution was rewound and repeated over and over again, phenotypes with the same property would always evolve. At the same time, such bistable GRNs were robust to noise. We also found that GRNs robust to mutation were not extremely rare among the highly-functional GRNs. This implies that mutational robustness would be readily acquired through evolution.

Source: journals.plos.org