The WIRED Guide to Artificial Intelligence

Supersmart algorithms won’t take all the jobs, But they are learning faster than ever, doing everything from medical diagnostics to serving up ads.

 

Even if progress on making artificial intelligence smarter stops tomorrow, don’t expect to stop hearing about how it’s changing the world. Big tech companies such as Google, Microsoft, and Amazon have amassed strong rosters of AI talent and impressive arrays of computers to bolster their core businesses of targeting ads or anticipating your next purchase.

 

They’ve also begun trying to make money by inviting others to run AI projects on their networks, which will help propel advances in areas such as health care or national security. Improvements to AI hardware, growth in training courses in machine learning, and open source machine-learning projects will also accelerate the spread of AI into other industries.

Artificial general intelligence

As yet nonexistent software that displays a humanlike ability to adapt to different environments and tasks, and transfer knowledge between them. Meanwhile, consumers can expect to be pitched more gadgets and services with AI-powered features. Google and Amazon in particular are betting that improvements in machine learning will make their virtual assistants and smart speakers more powerful. Amazon, for example, has devices with cameras to look at their ownersand the world around them.

 

The commercial possibilities make this a great time to be an AI researcher. Labs investigating how to make smarter machines are more numerous and better-funded than ever. And there’s plenty to work on: Despite the flurry of recent progress in AI and wild prognostications about its near future, there are still many things that machines can’t do, such as understanding the nuances of language, common-sense reasoning, and learning a new skill from just one or two examples. AI software will need to master tasks like these if it is to get close to the multifaceted, adaptable, and creative intelligence of humans. One deep-learning pioneer, Google’s Geoff Hinton, argues that making progress on that grand challenge will require rethinking some of the foundations of the field.

 

As AI systems grow more powerful, they will rightly invite more scrutiny. Government use of software in areas such as criminal justice is often flawed or secretive, and corporations like Facebook have begun confronting the downsides of their own life-shaping algorithms. More powerful AI has the potential to create worse problems, for example by perpetuating historical biases and stereotypes against women or black people. Civil-society groups and even the tech industry itself are now exploring rules and guidelines on the safety and ethics of AI. For us to truly reap the benefits of machines getting smarter, we’ll need to get smarter about machines.

Source: www.wired.com