Interacting contagions are indistinguishable from social reinforcement

From fake news to innovative technologies, many contagions spread via a process of social reinforcement, where multiple exposures are distinct from prolonged exposure to a single source. Contrarily, biological agents such as Ebola or measles are typically thought to spread as simple contagions. Here, we demonstrate that interacting simple contagions are indistinguishable from complex contagions. In the social context, our results highlight the challenge of identifying and quantifying mechanisms, such as social reinforcement, in a world where an innumerable amount of ideas, memes and behaviors interact. In the biological context, this parallel allows the use of complex contagions to effectively quantify the non-trivial interactions of infectious diseases.


Interacting contagions are indistinguishable from social reinforcement

Laurent Hébert-Dufresne, Samuel V. Scarpino, Jean-Gabriel Young