Month: November 2018

Complex Systems Postgraduate Entry Scholarship @ University of Sydney

Established in 2016, this Scholarship has been generously funded by the School of Civil Engineering to encourage and assist students with completing studies in complex systems at the University of Sydney.

Applicants must have an unconditional offer of admission for the Masters of Complex Systems within the Faculty of Engineering and Information Technologies at the University of Sydney.
Applicants must have achieved a WAM of 75 and above, or equivalent, in their previous tertiary studies.


Deadline: February 14th, 2019.


The Moral Machine experiment

With the rapid development of artificial intelligence have come concerns about how machines will make moral decisions, and the major challenge of quantifying societal expectations about the ethical principles that should guide machine behaviour. To address this challenge, we deployed the Moral Machine, an online experimental platform designed to explore the moral dilemmas faced by autonomous vehicles. This platform gathered 40 million decisions in ten languages from millions of people in 233 countries and territories. Here we describe the results of this experiment. First, we summarize global moral preferences. Second, we document individual variations in preferences, based on respondents’ demographics. Third, we report cross-cultural ethical variation, and uncover three major clusters of countries. Fourth, we show that these differences correlate with modern institutions and deep cultural traits. We discuss how these preferences can contribute to developing global, socially acceptable principles for machine ethics. All data used in this article are publicly available.


The Moral Machine experiment
Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich, Azim Shariff, Jean-François Bonnefon & Iyad Rahwan 
Nature volume 563, pages59–64 (2018)


Self-driving car dilemmas reveal that moral choices are not universal

When a driver slams on the brakes to avoid hitting a pedestrian crossing the road illegally, she is making a moral decision that shifts risk from the pedestrian to the people in the car. Self-driving cars might soon have to make such ethical judgments on their own — but settling on a universal moral code for the vehicles could be a thorny task, suggests a survey of 2.3 million people from around the world.


A Nobel opportunity for interdisciplinarity

Despite the growing interdisciplinarity of research, the Nobel Prize consolidates the traditional disciplinary categorization of science. There is, in fact, an opportunity for the most revered scientific reward to mirror the current research landscape.


A Nobel opportunity for interdisciplinarity
Michael Szell, Yifang Ma & Roberta Sinatra 
Nature Physics volume 14, pages1075–1078 (2018)


Urban Swarms: A new approach for autonomous waste management

Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.


Urban Swarms: A new approach for autonomous waste management
Antonio Luca Alfeo, Eduardo Castelló Ferrer, Yago Lizarribar Carrillo, Arnaud Grignard, Luis Alonso Pastor, Dylan T. Sleeper, Mario G. C. A. Cimino, Bruno Lepri, Gigliola Vaglini, Kent Larson, Marco Dorigo, Alex `Sandy’ Pentland