The Silent Cooperator: An Epigenetic Model for Emergence of Altruistic Traits in Biological Systems

Spatial evolutionary game theory explains how cooperative traits can survive the intense competition in biological systems. If the spatial distribution allows cooperators to interact with each other frequently, the benefits of cooperation will outweigh the losses due to exploitation by selfish organisms. However, for a cooperative behavior to get established in a system, it needs to be found initially in a sufficiently large cluster to allow a high frequency of intracooperator interactions. Since mutations are rare events, this poses the question of how cooperation can arise in a biological system in the first place. We present a simple model which captures two concepts from genetics that can explain how evolution overcomes the emergence problem. The first concept is, often in nature, a gene may not express its phenotype except under specific environmental conditions, rendering it to be a “silent” gene. The second key idea is that a neutral gene, one that does not harm or improve an organism’s survival chances, can still spread through a population if it is physically near to another gene that is positively selected. Through these two ideas, our model offers a possible solution to the fundamental problem of emergence of cooperation in biological systems.

 

The Silent Cooperator: An Epigenetic Model for Emergence of Altruistic Traits in Biological Systems
I. Hashem, D. Telen, P. Nimmegeers, and J. Van Impe

Complexity
Volume 2018, Article ID 2082037, 16 pages
https://doi.org/10.1155/2018/2082037

Source: www.hindawi.com