Month: June 2017

How an ethics-based approach works with global agendas

Is “ethics” a useless word when it comes to politics, policy-making, business, international affairs, laws, governments and real-world situations? The rule of law exists and, to varying extent, it governs power systems, wills and decisions of individuals and organizations, determining the status quo we live with. Then, why have an ethics-based approach at all?




Empowerment As Replacement for the Three Laws of Robotics

The greater ubiquity of robots creates a need for generic guidelines for robot behavior. We focus less on how a robot can technically achieve a predefined goal and more on what a robot should do in the first place. Particularly, we are interested in the question how a heuristic should look like, which motivates the robot’s behavior in interaction with human agents. We make a concrete, operational proposal as to how the information-theoretic concept of empowerment can be used as a generic heuristic to quantify concepts, such as self-preservation, protection of the human partner, and responding to human actions. While elsewhere we studied involved single-agent scenarios in detail, here, we present proof-of-principle scenarios demonstrating how empowerment interpreted in light of these perspectives allows one to specify core concepts with a similar aim as Asimov’s Three Laws of Robotics in an operational way. Importantly, this route does not depend on having to establish an explicit verbalized understanding of human language and conventions in the robots. Also, it incorporates the ability to take into account a rich variety of different situations and types of robotic embodiment.


Empowerment As Replacement for the Three Laws of Robotics

Christoph Salge, Daniel Polani

Front. Robot. AI, 29 June 2017 |


Characterizing information importance and the effect on the spread in various graph topologies

In this paper we present a thorough analysis of the nature of news in different mediums across the ages, introducing a unique mathematical model to fit the characteristics of information spread. This model enhances the information diffusion model to account for conflicting information and the topical distribution of news in terms of popularity for a given era. We translate this information to a separate graphical node model to determine the spread of a news item given a certain category and relevance factor. The two models are used as a base for a simulation of information dissemination for varying graph topoligies. The simulation is stress-tested and compared against real-world data to prove its relevancy. We are then able to use these simulations to deduce some conclusive statements about the optimization of information spread.


Characterizing information importance and the effect on the spread in various graph topologies
James Flamino, Alexander Norman, Madison Wyatt


1D Printing of Recyclable Robots

Recent advances in 3D printing are revolutionizing manufacturing, enabling the fabrication of structures with unprecedented complexity and functionality. Yet biological systems are able to fabricate systems with far greater complexity using a process that involves assembling and folding a linear string. Here, we demonstrate a 1D printing system that uses an approach inspired by the ribosome to fabricate a variety of specialized robotic automata from a single string of source material. This proof-of-concept system involves both a novel manufacturing platform that configures the source material using folding and a computational optimization tool that allows designs to be produced from the specification of high-level goals. We show that our 1D printing system is able to produce three distinct robots from the same source material, each of which is capable of accomplishing a specialized locomotion task. Moreover, we demonstrate the ability of the printer to use recycled material to produce new designs, enabling an autonomous manufacturing ecosystem capable of repurposing previous iterations to accomplish new tasks.


Title: 1D Printing of  Recyclable Robots
Authors: Daniel Cellucci, Robert MacCurdy, Hod Lipson, Sebastian Risi (2017)
In: EEE Robotics and Automation Letters (RA-L).


Limited individual attention and online virality of low-quality information

Social media are massive marketplaces where ideas and news compete for our attention. Previous studies have shown that quality is not a necessary condition for online virality and that knowledge about peer choices can distort the relationship between quality and popularity. However, these results do not explain the viral spread of low-quality information, such as the digital misinformation that threatens our democracy. We investigate quality discrimination in a stylized model of an online social network, where individual agents prefer quality information, but have behavioural limitations in managing a heavy flow of information. We measure the relationship between the quality of an idea and its likelihood of becoming prevalent at the system level. We find that both information overload and limited attention contribute to a degradation of the market’s discriminative power. A good tradeoff between discriminative power and diversity of information is possible according to the model. However, calibration with empirical data characterizing information load and finite attention in real social media reveals a weak correlation between quality and popularity of information. In these realistic conditions, the model predicts that low-quality information is just as likely to go viral, providing an interpretation for the high volume of misinformation we observe online.


Limited individual attention and online virality of low-quality information
Xiaoyan Qiu, Diego F. M. Oliveira, Alireza Sahami Shirazi, Alessandro Flammini & Filippo Menczer

Nature Human Behaviour 1, Article number: 0132 (2017)