The world of long-range interactions: A bird’s eye view

In recent years, studies of long-range interacting (LRI) systems have taken centre stage in the arena of statistical mechanics and dynamical system studies, due to new theoretical developments involving tools from as diverse a field as kinetic theory, non-equilibrium statistical mechanics, and large deviation theory, but also due to new and exciting experimental realizations of LRI systems. In this invited contribution, we discuss the general features of long-range interactions, emphasizing in particular the main physical phenomenon of non-additivity, which leads to a plethora of distinct effects, both thermodynamic and dynamic, that are not observed with short-range interactions: Ensemble inequivalence, slow relaxation, broken ergodicity. We also discuss several physical systems with long-range interactions: mean-field spin systems, self-gravitating systems, Euler equations in two dimensions, Coulomb systems, one-component electron plasma, dipolar systems, free-electron lasers, atoms trapped in optical cavities.


The world of long-range interactions: A bird’s eye view
Shamik Gupta, Stefano Ruffo