Adaptive Local Information Transfer in Random Boolean Networks

Living systems such as gene regulatory networks and neuronal networks have been supposed to work close to dynamical criticality, where their information-processing ability is optimal at the whole-system level. We investigate how this global information-processing optimality is related to the local information transfer at each individual-unit level. In particular, we introduce an internal adjustment process of the local information transfer and examine whether the former can emerge from the latter. We propose an adaptive random Boolean network model in which each unit rewires its incoming arcs from other units to balance stability of its information processing based on the measurement of the local information transfer pattern. First, we show numerically that random Boolean networks can self-organize toward near dynamical criticality in our model. Second, the proposed model is analyzed by a mean-field theory. We recognize that the rewiring rule has a bootstrapping feature. The stationary indegree distribution is calculated semi-analytically and is shown to be close to dynamical criticality in a broad range of model parameter values.

 

Adaptive Local Information Transfer in Random Boolean Networks

Taichi Haruna

Artificial Life

Winter 2017, Vol. 23, No. 1, Pages: 105-118
Posted Online February 27, 2017.
(doi:10.1162/ARTL_a_00224)

Source: www.mitpressjournals.org