Improving election prediction internationally

This study reports the results of a multiyear program to predict direct executive elections in a variety of countries from globally pooled data. We developed prediction models by means of an election data set covering 86 countries and more than 500 elections, and a separate data set with extensive polling data from 146 election rounds. We also participated in two live forecasting experiments. Our models correctly predicted 80 to 90% of elections in out-of-sample tests. The results suggest that global elections can be successfully modeled and that they are likely to become more predictable as more information becomes available in future elections. The results provide strong evidence for the impact of political institutions and incumbent advantage. They also provide evidence to support contentions about the importance of international linkage and aid. Direct evidence for economic indicators as predictors of election outcomes is relatively weak. The results suggest that, with some adjustments, global polling is a robust predictor of election outcomes, even in developing states. Implications of these findings after the latest U.S. presidential election are discussed.

 

 

Improving election prediction internationally
Ryan Kennedy, Stefan Wojcik, David Lazer

Science  03 Feb 2017:
Vol. 355, Issue 6324, pp. 515-520
DOI: 10.1126/science.aal2887

Source: science.sciencemag.org