Multiplex Modeling of the Society

The society has a multi-layered structure, where the layers represent the different contexts. To model this structure we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We find that when merging such WSN models, a sufficient amount of inter-layer correlation is needed to maintain the relationship between topology and link weights, while these correlations destroy the enhancement in the community overlap due to multiple layers. To resolve this, we devise a geographic multi-layer WSN model, where the indirect inter-layer correlations due to the geographic constraints of individuals enhance the overlaps between the communities and, at the same time, the Granovetterian structure is preserved. Furthermore, the network of social interactions can be considered as a multiplex from another point of view too: each layer corresponds to one communication channel and the aggregate of all them constitutes the entire social network. However, usually one has information only about one of the channels, which should be considered as a sample of the whole. Here we show by simulations and analytical methods that this sampling may lead to bias. For example, while it is expected that the degree distribution of the whole social network has a maximum at a value larger than one, we get with reasonable assumptions about the sampling process a monotonously decreasing distribution as observed in empirical studies of single channel data. We analyse the far-reaching consequences of our findings.

 

Multiplex Modeling of the Society

Janos Kertesz, Janos Torok, Yohsuke Murase, Hang-Hyun Jo, Kimmo Kaski

Source: arxiv.org