Disease Surveillance on Complex Social Networks

As public health agencies strive to harness big data to improve outbreak surveillance, they face the challenge of extracting meaningful information that can be directly used to improve public health, without incurring additional costs. In this article, we address the question: Which nodes in a social network should be selectively monitored to detect and monitor outbreaks as early and accurately as possible? We derive best-case performance scenarios, and show that a practical strategy for data collection–recruiting friends of randomly selected individuals–is expected to perform reasonably well, in terms of the timing and reliability of the epidemiological information collected.

 

Herrera JL, Srinivasan R, Brownstein JS, Galvani AP, Meyers LA (2016) Disease Surveillance on Complex Social Networks. PLoS Comput Biol 12(7): e1004928. doi:10.1371/journal.pcbi.1004928

Source: journals.plos.org

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s