Understanding Predictability and Exploration in Human Mobility

Predictive models for human mobility have important applications in many fields such as traffic control, ubiquitous computing and contextual advertisement. The predictive performance of models in literature varies quite broadly, from as high as 93% to as low as under 40%. In this work we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users for periods between 3 months and one year. We show that it is easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover we demonstrate how the temporal and spatial resolution of the data can have strong influence on the accuracy of prediction. Finally we uncover that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility.


Understanding Predictability and Exploration in Human Mobility
Andrea Cuttone, Sune Lehmann, Marta C. González


Source: arxiv.org

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s